
Page 1 of 7

Formal methods

3.1 INTRODUCTION: In computer science, specifically software engineering

and hardware engineering, formal methods are a particular kind of mathematically

based techniques for the specification, development and verification of software

and hardware systems.[1] The use of formal methods for software and hardware

design is motivated by the expectation that, as in other engineering disciplines,

performing appropriate mathematical analysis can contribute to the reliability and

robustness of a design.[2]

Formal methods are best described as the application of a fairly broad variety of

theoretical computer science fundamentals, in particular logic calculi, formal

languages, automata theory, and program semantics, but also type systems and

algebraic data types to problems in software and hardware specification and

verification.[3]

Taxonomy

Formal methods can be used at a number of levels:

Level 0: Formal specification may be undertaken and then a program developed

from this informally. This has been dubbed formal methods lite. This may be the

most cost-effective option in many cases.

Level 1: Formal development and formal verification may be used to produce a

program in a more formal manner. For example, proofs of properties or refinement

from the specification to a program may be undertaken. This may be most

appropriate in high-integrity systems involving safety or security.

Level 2: Theorem provers may be used to undertake fully formal machine-checked

proofs. This can be very expensive and is only practically worthwhile if the cost of

mistakes is extremely high (e.g., in critical parts of microprocessor design).

Further information on this is expanded below.

As with programming language semantics, styles of formal methods may be

roughly classified as follows:

 Denotational semantics, in which the meaning of a system is expressed in

the mathematical theory of domains. Proponents of such methods rely on the

well-understood nature of domains to give meaning to the system; critics

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Hardware_engineering
http://en.wikipedia.org/wiki/Mathematically
http://en.wikipedia.org/wiki/Formal_specification
http://en.wikipedia.org/wiki/Formal_verification
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Computer_hardware
http://en.wikipedia.org/wiki/Formal_methods#cite_note-butler-1
http://en.wikipedia.org/wiki/Formal_methods#cite_note-2
http://en.wikipedia.org/wiki/Theoretical_computer_science
http://en.wikipedia.org/wiki/Logic_in_computer_science
http://en.wikipedia.org/wiki/Formal_language
http://en.wikipedia.org/wiki/Formal_language
http://en.wikipedia.org/wiki/Automata_theory
http://en.wikipedia.org/wiki/Program_semantics
http://en.wikipedia.org/wiki/Type_systems
http://en.wikipedia.org/wiki/Algebraic_data_types
http://en.wikipedia.org/wiki/Formal_methods#cite_note-3
http://en.wikipedia.org/wiki/Formal_specification
http://en.wikipedia.org/wiki/Formal_development
http://en.wikipedia.org/wiki/Formal_verification
http://en.wikipedia.org/wiki/Program_refinement
http://en.wikipedia.org/wiki/Formal_specification
http://en.wikipedia.org/wiki/Safety
http://en.wikipedia.org/wiki/Security
http://en.wikipedia.org/wiki/Automated_theorem_prover
http://en.wikipedia.org/wiki/Formal_methods#Uses
http://en.wikipedia.org/wiki/Formal_semantics_of_programming_languages
http://en.wikipedia.org/wiki/Denotational_semantics
http://en.wikipedia.org/wiki/Domain_theory

Page 2 of 7

point out that not every system may be intuitively or naturally viewed as a

function.

 Operational semantics, in which the meaning of a system is expressed as a

sequence of actions of a (presumably) simpler computational model.

Proponents of such methods point to the simplicity of their models as a

means to expressive clarity; critics counter that the problem of semantics has

just been delayed (who defines the semantics of the simpler model?).

 Axiomatic semantics, in which the meaning of the system is expressed in

terms of preconditions and postconditions which are true before and after the

system performs a task, respectively. Proponents note the connection to

classical logic; critics note that such semantics never really describe what a

system does (merely what is true before and afterwards).

Lightweight formal methods

Some practitioners believe that the formal methods community has

overemphasized full formalization of a specification or design.[4][5] They contend

that the expressiveness of the languages involved, as well as the complexity of the

systems being modelled, make full formalization a difficult and expensive task. As

an alternative, various lightweight formal methods, which emphasize partial

specification and focused application, have been proposed. Examples of this

lightweight approach to formal methods include the Alloy object modelling

notation,[6] Denney's synthesis of some aspects of the Z notation with use case

driven development,[7] and the CSK VDM Tools.[8]

Elements

Formal Methods consists of the following basic elements :-

Requirement Specifications

These are usually developed in close collaboration with the customer. They are of

a general nature regarding implementation but a specific nature about elements of

the project such as :-

1. physicality.

2. performance.

3. inter-connectivity.

4. functionality.

Project Specifications

http://en.wikipedia.org/wiki/Operational_semantics
http://en.wikipedia.org/wiki/Axiomatic_semantics
http://en.wikipedia.org/wiki/Precondition
http://en.wikipedia.org/wiki/Postcondition
http://en.wikipedia.org/wiki/Logic
http://en.wikipedia.org/wiki/Formal_methods#cite_note-4
http://en.wikipedia.org/wiki/Formal_methods#cite_note-4
http://en.wikipedia.org/wiki/Alloy_language
http://en.wikipedia.org/wiki/Formal_methods#cite_note-6
http://en.wikipedia.org/wiki/Z_notation
http://en.wikipedia.org/wiki/Use_case
http://en.wikipedia.org/wiki/Formal_methods#cite_note-7
http://en.wikipedia.org/wiki/Vienna_Development_Method
http://en.wikipedia.org/wiki/Formal_methods#cite_note-8

Page 3 of 7

These are usually developed by the Project Architect. They include the

specification of the project framework (how the components are tied together -

how they communicate etc.), the component interfaces (e.g. function call based

structures) and the component functionality. They form the specific details

required by the engineers implementing the components of the project.

Project Implementation Details

These are usually constructed by the engineers constructing the project. These

form a description of how the project was implemented on an individual

component basis and on a system wide basis.

Test Specifications

These have a 1:1 relationship to the Requirement Specifications. These are often

constructed by a Test Engineer and can consist of test scripts. Additional tests may

also be specified.

Test Results

These indicate the results of the tests (software is usually tested by an automated

test harness) and are used to verify the project.

Formal Methods projects are specification and test driven.

With any Formal Methods project there is an additional layer involving

implementation standards and associated documentation. With software this is

Coding Standards (not to be confused with coding styles).

Uses

Formal methods can be applied at various points through the development process.

Specification

Formal methods may be used to give a description of the system to be developed,

at whatever level(s) of detail desired. This formal description can be used to guide

further development activities (see following sections); additionally, it can be used

to verify that the requirements for the system being developed have been

completely and accurately specified.

http://en.wikipedia.org/wiki/Software_development_process

Page 4 of 7

The need for formal specification systems has been noted for years. In the ALGOL

58 report,[9] John Backus presented a formal notation for describing programming

language syntax (later named Backus Normal Form then renamed Backus-Naur

Form (BNF)[10]). Backus also wrote that a formal description of the meaning of

syntactically valid ALGOL programs wasn't completed in time for inclusion in the

report. "Therefore the formal treatment of the semantics of legal programs will be

included in a subsequent paper." It never appeared.

Development

Once a formal specification has been produced, the specification may be used as a

guide while the concrete system is developed during the design process (i.e.,

realized typically in software, but also potentially in hardware). For example:

 If the formal specification is in an operational semantics, the observed

behavior of the concrete system can be compared with the behavior of the

specification (which itself should be executable or simulateable).

Additionally, the operational commands of the specification may be

amenable to direct translation into executable code.

 If the formal specification is in an axiomatic semantics, the preconditions

and post-conditions of the specification may become assertions in the

executable code.

Verification

Once a formal specification has been developed, the specification may be used as

the basis for proving properties of the specification (and hopefully by inference the

developed system).

Human-directed proof

Sometimes, the motivation for proving the correctness of a system is not the

obvious need for re-assurance of the correctness of the system, but a desire to

understand the system better. Consequently, some proofs of correctness are

produced in the style of mathematical proof: handwritten (or typeset) using natural

language, using a level of informality common to such proofs. A "good" proof is

one which is readable and understandable by other human readers.

Critics of such approaches point out that the ambiguity inherent in natural language

allows errors to be undetected in such proofs; often, subtle errors can be present in

the low-level details typically overlooked by such proofs. Additionally, the work

http://en.wikipedia.org/wiki/ALGOL_58
http://en.wikipedia.org/wiki/ALGOL_58
http://en.wikipedia.org/wiki/Formal_methods#cite_note-9
http://en.wikipedia.org/wiki/John_Backus
http://en.wikipedia.org/wiki/Backus_Normal_Form
http://en.wikipedia.org/wiki/Backus-Naur_Form
http://en.wikipedia.org/wiki/Backus-Naur_Form
http://en.wikipedia.org/wiki/Formal_methods#cite_note-10
http://en.wikipedia.org/wiki/Software_development
http://en.wikipedia.org/wiki/Software_design
http://en.wikipedia.org/wiki/Assertion_(computing)
http://en.wikipedia.org/wiki/Mathematical_proof
http://en.wikipedia.org/wiki/Mathematical_proof
http://en.wikipedia.org/wiki/Natural_language
http://en.wikipedia.org/wiki/Natural_language
http://en.wikipedia.org/wiki/Ambiguity

Page 5 of 7

involved in producing such a good proof requires a high level of mathematical

sophistication and expertise.

Automated proof

In contrast, there is increasing interest in producing proofs of correctness of such

systems by automated means. Automated techniques fall into two general

categories:

 Automated theorem proving, in which a system attempts to produce a formal

proof from scratch, given a description of the system, a set of logical

axioms, and a set of inference rules.

 Model checking, in which a system verifies certain properties by means of

an exhaustive search of all possible states that a system could enter during its

execution.

Some automated theorem provers require guidance as to which properties are

"interesting" enough to pursue, while others work without human intervention.

Model checkers can quickly get bogged down in checking millions of uninteresting

states if not given a sufficiently abstract model.

Proponents of such systems argue that the results have greater mathematical

certainty than human-produced proofs, since all the tedious details have been

algorithmically verified. The training required to use such systems is also less than

that required to produce good mathematical proofs by hand, making the techniques

accessible to a wider variety of practitioners.

Critics note that some of those systems are like oracles: they make a

pronouncement of truth, yet give no explanation of that truth. There is also the

problem of "verifying the verifier"; if the program which aids in the verification is

itself unproven, there may be reason to doubt the soundness of the produced

results. Some modern model checking tools produce a "proof log" detailing each

step in their proof, making it possible to perform, given suitable tools, independent

verification.

Applications

Formal methods are applied in different areas of hardware and software, including

routers, Ethernet switches, routing protocols, and security applications. There are

several examples in which FMs have been used to verify the functionality of the

hardware and software used in DCs. IBM used ACL2, a theorem prover, in AMD

http://en.wikipedia.org/wiki/Automated_theorem_proving
http://en.wikipedia.org/wiki/Model_checking
http://en.wikipedia.org/wiki/Oracle_machine
http://en.wikipedia.org/wiki/Quis_custodiet_ipsos_custodes%3F
http://en.wikipedia.org/wiki/ACL2

Page 6 of 7

x86 processor development process. Intel uses FMs to verify its hardware and

firmware (permanent software programmed into a read-only memory). There are

several other projects of NASA in which FMs are applied, such as Next Generation

Air Transportation System, Unmanned Aircraft System integration in National

Airspace System,[11] and Airborne Coordinated Conflict Resolution and Detection

(ACCoRD).[12]

B-Method with AtelierB is used to develop safety automatisms for the various

subways installed throughout the world by Alstom and Siemens, and also for

Common Criteria certification and the development of system models by ATMEL

and STMicroelectronics.

Formal verification has been frequently used in hardware by most of the well-

known hardware vendors, such as IBM, Intel, and AMD. There are many areas of

hardware, where Intel have used FMs to verify the working of the products, such

as parameterized verification of cache coherent protocol,[13] Intel Core i7 processor

execution engine validation [14] (using theorem proving, BDD’s, and symbolic

evaluation), optimization for Intel IA-64 architecture using HOL light theorem

prover,[15] and verification of high performance dual-port gigabit Ethernet

controller with a support for PCI express protocol and Intel advance management

technology using Cadence.[16] Similarly, IBM has used formal methods in the

verification of power gates,[17] registers,[18] and functional verification of the IBM

Power7 microprocessor.[19]

Formal methods and notations

There are a variety of formal methods and notations available.

Specification languages

 Abstract State Machines (ASMs)

 A Computational Logic for Applicative Common Lisp (ACL2)

 ANSI/ISO C Specification Language (ACSL)

 Alloy

 Autonomic System Specification Language (ASSL)

 B-Method

 CADP

 Common Algebraic Specification Language (CASL)

 Java Modeling Language (JML)

 Knowledge Based Software Assistant (KBSA)

 Process calculi

http://en.wikipedia.org/wiki/Next_Generation_Air_Transportation_System
http://en.wikipedia.org/wiki/Next_Generation_Air_Transportation_System
http://en.wikipedia.org/wiki/Formal_methods#cite_note-11
http://en.wikipedia.org/wiki/Formal_methods#cite_note-12
http://en.wikipedia.org/wiki/B-Method
http://en.wikipedia.org/w/index.php?title=AtelierB&action=edit&redlink=1
http://en.wikipedia.org/wiki/Alstom
http://en.wikipedia.org/wiki/Siemens
http://en.wikipedia.org/wiki/ATMEL
http://en.wikipedia.org/wiki/STMicroelectronics
http://en.wikipedia.org/wiki/Formal_methods#cite_note-13
http://en.wikipedia.org/wiki/Formal_methods#cite_note-14
http://en.wikipedia.org/wiki/Binary_decision_diagram
http://en.wikipedia.org/wiki/Formal_methods#cite_note-15
http://en.wikipedia.org/wiki/Formal_methods#cite_note-16
http://en.wikipedia.org/wiki/Formal_methods#cite_note-17
http://en.wikipedia.org/wiki/Formal_methods#cite_note-18
http://en.wikipedia.org/wiki/Formal_methods#cite_note-19
http://en.wikipedia.org/wiki/Abstract_State_Machines
http://en.wikipedia.org/wiki/ACL2
http://en.wikipedia.org/wiki/ANSI/ISO_C_Specification_Language
http://en.wikipedia.org/wiki/Alloy_language
http://en.wikipedia.org/w/index.php?title=Autonomic_System_Specification_Language&action=edit&redlink=1
http://en.wikipedia.org/wiki/B-Method
http://en.wikipedia.org/wiki/CADP
http://en.wikipedia.org/wiki/Common_Algebraic_Specification_Language
http://en.wikipedia.org/wiki/Java_Modeling_Language
http://en.wikipedia.org/wiki/Knowledge_Based_Software_Assistant
http://en.wikipedia.org/wiki/Process_calculi

Page 7 of 7

o CSP

o LOTOS

o π-calculus

 Actor model

 Esterel

 Lustre

 mCRL2

 Perfect Developer

 Petri nets

 Predicative programming

 RAISE

 SPARK Ada

 Spec sharp (Spec#)

 Specification and Description Language

 Temporal logic of actions (TLA)

 USL

 VDM

o VDM-SL

o VDM++

 Z notation

 Rebeca Modeling Language

Model checkers

 SPIN

 PAT is a powerful free model checker, simulator and refinement checker for

concurrent systems and CSP extensions (e.g. shared variables, arrays,

fairness).

 MALPAS Software Static Analysis Toolset is an industrial strength model

checker used for Formal Proof of safety critical systems

 UPPAAL

http://en.wikipedia.org/wiki/Communicating_Sequential_Processes
http://en.wikipedia.org/wiki/Language_Of_Temporal_Ordering_Specification
http://en.wikipedia.org/wiki/Pi-calculus
http://en.wikipedia.org/wiki/Actor_model
http://en.wikipedia.org/wiki/Esterel
http://en.wikipedia.org/wiki/Lustre_programming_language
http://en.wikipedia.org/wiki/MCRL2
http://en.wikipedia.org/wiki/Perfect_Developer
http://en.wikipedia.org/wiki/Petri_nets
http://en.wikipedia.org/wiki/Predicative_programming
http://en.wikipedia.org/wiki/RAISE_specification_language
http://en.wikipedia.org/wiki/SPARK_(programming_language)
http://en.wikipedia.org/wiki/Spec_sharp
http://en.wikipedia.org/wiki/Specification_and_Description_Language
http://en.wikipedia.org/wiki/Temporal_logic_of_actions
http://en.wikipedia.org/wiki/Universal_Systems_Language
http://en.wikipedia.org/wiki/Vienna_Development_Method
http://en.wikipedia.org/wiki/VDM_specification_language
http://en.wikipedia.org/wiki/Z_notation
http://en.wikipedia.org/wiki/Rebeca_Modeling_Language
http://en.wikipedia.org/wiki/SPIN_model_checker
http://www.comp.nus.edu.sg/~pat/
http://en.wikipedia.org/wiki/MALPAS_Software_Static_Analysis_Toolset
http://en.wikipedia.org/wiki/Uppaal_Model_Checker

